Skip to main content

PTS SEMESTER GENAP

SOAL


JAWABAN

1. 


2. 

3. 

4. 


5. 

a) 0 m/s

b) v(t) = 5t - 1/2 t^2
a(t) = 5 - t
a(3) = 5 - 3
a(3) = 2
percepatan pada saat t mendekati 3 detik 2 m/s^2


SOAL



JAWABAN

1. f(x)=(2x+3)³
=(2x+3)(2x+3)(2x+3)
=(4x²+12x+9)(2x+3)
=(8x³+36x²+54x+27)

f'(x) =24x²+72x+54

2. 



3. turunan pertama dari f(x)=(2-6x)³ adalah 
f(x) = (2 - 6x)^3
f'(x) = 3 . (2 - 6x)^2 . (-6)
f'(x) = -18 . (2 - 6x)^2
4. 


5. 



6. 





7. 



8. 



9. 


10. 























SOAL



JAWABAN

1. Lim = 2x + 3 x²
     X →2
    = 2(2) + 3(2)²
    = 4 + 3(4)
    = 4 + 12
    = 16

2. Lim = (x²-5)³
     X →-3
     = ((-3)²- 5)²
     = (9-5)³
     = 4³
     = 64


3. 


4. 


5. 


6. 


7. 


8. 



9. nilai lim x mendekati a (f(x)+ 1 )² - 3f(x) adalah

langsung ganti f(x) jadi p
maka
(p + 1)² - 3p = p² + 2p + 1 - 3p = p² - p + 1


10. Lim 2x² - x - 3 per 3x² + 8x + 5 x->1

lim x->1 (x+1) (2x-3) / (x+1) (3x+5) 

= lim x->1 (2x-3) / (3x+5) = -1/8


SOAL



JAWABAN

1. 



2. L persegi = s²
    f(x) = axn  
        f'(x) = nxn-1
        f (x) = x²
        f'(x) = 2x 2-1 =2x
             x = 6  
    f'(6) = 2.6
            =12


3. Diketahui:
    P (t) = 10³ .t²  - 5 .10² .t + 10^6

    Ditanya:
    Laju pertumbuhan penduduk 5 tahun mendatang = ?

    Jawab:
    Laju perubahan pada t = 5 dihitung dengan  p' (5)

    P (t) = 10³ .t²  - 5 .10² .t + 10^6
    P' (t) = 2 . 10³  . t  - 5 .10²
    P' (5) = 2 . 10³ (5) - 5 . 10²
             = 10 . 10³ - 5 .10²
             = 10.000 - 500
             = 9.500. penduduk

      Jadi, laju pertumbuhan penduduk 5 tahun mendatang adalah *9.500. penduduk*


4. n = 2m - 40

    p = m² + n²
       = m² + (2m - 40)²
       = 5m² - 160m + 1600
    minimum saat p' = 0
       10m - 160 = 0
    m = 16
    n = 32 - 40 = - 8

    maka nilai minimumnya:
    p = 16² + (-8)² = 256 + 64 = 320



5. Diberikan fungsi f(x) = ax² + bx+ c. Jika f'(0) = 2 dan f(2) = 6. Tentukan nilai     a, b, dan c!
    Jawab :
    • f'(x) = 2ax + b
            2 = 2a(0) + b
            2 = 2+b
            b = 0
    • f(2) = a(2)²+ b(2) + c
          6 = 2a² + 2b + c
          6 = 2a² + c
          c = 6 - 2a²
         a² = c/2 - 3
         a  = c/2 / ½ - 3/½
    Jadi, a = c/2 / ½ - 3/½, b= 0, dan c = 6 - 2a²

Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , m...

Jawaban soal limit turunan dan integral no 11

PENERAPAN TURUNAN: KEMONOTONAN, INTERVAL FUNGSI NAIK/TURUN, KECEKUNGAN DAN UJI TURUNAN KEDUA

  Kemonotonan fungsi adalah salah satu materi yang termasuk kedalam penggunaan turunan (pada buku kalkulus edisi 5 jilid 1). Materi ini digunakan untuk melihat naik turunya suatu grafik fungsi. Kemonotonan grafik fungsi akan mudah dipahami jika kamu sudah mengenal materi selang/interval. Soal kemonotonan fungsi biasanya menanyakan pada interval berapa fungsi tersebut naik dan pada interval berapa fungsi tersebut turun. Kemonotonan fungsi sederhananya seperti ini, suatu fungsi dikatakan monoton jika fungsi tersebut naik terus ataupun turun terus pada suatu selang/interval. Teorema berikutnya menunjukkan bagaimana penggunaan turunan kedua suatu fungsi untuk menentukan selang di mana grafik  f  tersebut cekung ke atas atau cekung ke bawah. Bukti teorema ini merupakan akibat langsung dari Teorema Uji Fungsi Naik dan Turun, dan definisi kecekungan. Adapun kurva fungsi naik dan fungsi turun dapat kita amati pada gambar di bawah ini. Fungsi f selalu naik pada interval I, jika m...