Skip to main content

PERSAMAAN GARIS SINGGUNG PADA KURVA DAN GARIS NORMAL

 Persamaan Garis Singgung Kurva dan Persamaan Garis Normal di suatu Titik pada Kurva

Anda masih ingat tentang gradien garis singgung, bukan? Jika belum memahami benar, maka bisa jadi Anda akan sedikit mengalami kesulitan untuk memahami materi ini. Mengapa demikian? Karena materi tentang persamaan garis singgung kurva masih berkaitan dengan gradien garis singgung. Perhatikan gambar berikut ini:

Garis Singgung & Garis Normal

Garis singgung bergradien m, jika titik yang dilaluinya adalah titik singgung A(x1,y1) maka persamaan garis singgungnya adalah

Persamaan garis normal bergradien -1/m dan melalui A(x1,y1)

Untuk memperjelas persamaan garis singgung dan garis normal, ikuti simulasi berikut ini:

Apakah Anda sudah memahami persamaan garis singgung dan persamaan garis normal di titik tertentu pada kurva? Jika belum, Anda dapat mengamati kembali animasi tentang persamaan garis singgung dan persamaan garis normal. Selanjutnya, cobalah pahami contoh persamaan garis singgung dan garis normal berikut ini.

Contoh

 

  • Tentukan Persamaan garis singgung dan garis normal pada kurva y = x4 - 7x2 + 20 di titik yang berabsis 2 adalah...

 

Jawab :

 

x = 2 y = x4 - 7x2 + 20   y = 24 - 7.22 + 20 = 16 - 28 + 20 = 8 titik singgung A(2,8)

 

Persamaan Garis singgung

 

m = y' = 4x3 - 14 x = 4.23 - 14.2 = 32 - 28 = 4 , gradien, m = 4 melalui A(2,8)

 

Jadi, persamaan garis singgungnya adalah

 

                      y - y1 = m(x - x1)

 

                        y - 8 = 4(x - 2)

 

                        y - 8 = 4x - 8

 

                            y = 4x  Persamaan garis singgung

 

Persamaan garis normal

 

gradien garis singgung , m = 4, gradien garis normal m2 = - 1/4

 

Garis normal bergardien m2 = - 1/4  melalui A(2,8)

 

Jadi, persamaan garis Normalnya adalah

 

                      y - y1 = m2(x - x1)

 

                        y - 8 = - 1/4(x - 2) kalikan 4

 

                     4y - 32 = -x +2

 

                      x + 4y = 34  Persamaan garis normal

2. Tentukan persamaan garis singgung kurva y = x2 di titik (-1, 1)!

 

Jawab:

 

Cari gradien dari kurva y dengan menggunakan turunan pertama. m = y’

 

m = '(a)

= 2x

m = 2(-1)

= -2

 

Maka persamaan garis singgung kurva dengan gradient m = -2 di titik (-1, 1) adalah

 

y -y1 = m(x -x1)

y -1 = -2(x-(-1))

y -1 = -2x -2

y = -2x -1

Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , maka transformasi T bersesuaian dengan matriks… Jawaban : E Pemba

BARISAN DAN DERET ARITMATIKA bersama contoh soalnya

BARISAN ARITMATIKA Barisan Aritmatika (Un) adalah barisan bilangan yang memiliki pola yang tetap. Nah, polanya itu bisa berdasarkan operasi penjumlahan atau pengurangan. Jadi, setiap urutan suku memiliki selisih atau beda yang sama. Selisih inilah yang dinamakan beda. Biasa disimbolkan dengan b. Misalnya, di suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a. Lalu, di suku kedua (U2), yaitu 5. Suku ketiga (U3), yaitu 8, dan seterusnya. Berarti, barisan ini memiliki beda 3 pada setiap sukunya. 2, 5, 8, ... (setiap suku memiliki selisih atau beda, yaitu 3) Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut. Contoh Soal Barisan Aritmatika 1 . Nilai   A. 882 B. 1030 C. 1040 D. 1957 E. 2060 Jawaban : B Pembahasan :  2 . Suku keempat dan suku ketujuh barisan aritmetika berturut-turut adalah 17 dan 29. Suku ke 25 barisan tersebut adalah…. A. 97 B. 101 C. 105    D.109    E. 113 Jawaban : B Pembahasan :  3 . Sua

PAS MATEMATIKA

 Deva Naufal Fadhilla (11) XI IPS 2 1. Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman 2.    3. 4.  5.  6.  7. Penjelasan dengan langkah-langkah: n_>5={1,2,3,4,5} 2n-3<2n-2 =2(1)-3<2(1)-2 =(-1)<0(benar) 2(2) -3<2(2) -2 =1<2 (benar) 2(3) -3<2(3) -2 =3<4(benar) 2(4) -3<2(4) -2 =5<6( benar) 2(5) -3<2(5) -2 =7<8( benar) 8. 9.  diket : 5kg gula + 30kg beras = 410.000 2kg gula + 60kg beras = 740.000 Dit : 2kg gula + 5kg beras ? Jwb : gula = x beras = y 5x + 30y = 410.000 |*2 2x + 60y = 740.000 |*1 10x + 60y = 820.000 2x + 60y = 740.000  _______- 8x = 80.000 x = 10.000 subtitusikan x nya ke persamaan  2x + 60y = 740.000 2(10.000) + 60y = 740.000 20.000 + 60y = 740.000 60y = 720.000 y = 12.000 jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000 maka 2kg gula dan 5kg beras = 2(10.000) + 5(12.000) = 20.000 + 60.000 = Rp 80.000 10. tentukan daerah bersih dari pertidaksamaan linear berikut 5x + 3y ≤ 15 jawaban : 5x + 3y ≤ 15