Skip to main content

SOAL KONTEKSTUAL YANG BERHUBUNGAN DENGAN TURUNAN

 1. Suatu perusahaan memproduksi 

x unit barang dengan biaya (4x28x+24) ribu rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan harga Rp40.000,00 untuk tiap unit, maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah 
A. Rp16.000,00                    D. Rp52.000,00
B. Rp32.000,00                    E. Rp64.000,00
C. Rp48.000,00

Pembahasan : 
Misalkan f(x) menyatakan total biaya produksi x unit barang, g(x) menyatakan harga jual x unit barang dalam satuan ribu rupiah, dan h(x) menyatakan keuntungan yang diperoleh atas penjualan x unit barang, maka
f(x)=x(4x28x+24)=4x38x2+24xg(x)=40xh(x)=g(x)f(x)=40x(4x38x2+24x)=4x3+8x2+16x
Agar maksimum, nilai turunan pertama h(x) harus bernilai 0
h(x)=4x3+8x2+16xh(x)=12x2+16x+160=12x2+16x+16Bagi kedua ruas dengan -40=3x24x40=(3x+2)(x2)
Diperoleh x=23 atau x=2. Karena x menyatakan jumlah barang dan nilainya tidak mungkin negatif/pecahan, maka x yang diambil adalah x=2
Substitusikan x=2 ke h(x)
h(2)=4(2)3+8(2)2+16(2)=4(8)+8(4)+32=32
Jadi, keuntungan maksimum yang diperoleh perusahaan tersebut adalah Rp32.000,00.
(Jawaban B)

2.  Suatu pembangunan proyek gedung sekolah dapat diselesaikan dalam 
x hari dengan biaya proyek per hari (2x600+30x) ribu rupiah. Agar biaya proyek minimum, proyek tersebut harus diselesaikan dalam waktu  hari. 
A. 80                      C. 150                       E. 320
B. 100                    D 240   

Pembahasan :
Misalkan f(x) menyatakan biaya proyek selama x hari dalam satuan ribu rupiah, sehingga
f(x)=x(2x600+30x)=2x2600x+30
Agar biaya proyek minimum, nilai x yang bersesuaian dapat ditentukan saat f(x)=0, yakni
4x600=04x=600x=150
Jadi, proyek tersebut harus diselesaikan dalam waktu 150 hari agar biaya proyeknya minimum.
(Jawaban C)

3. Proyek pembangunan suatu gedung dapat diselesaikan dalam 
x hari dengan menghabiskan biaya proyek per hari sebesar (3x180+5.000x) ratus ribu rupiah. Biaya minimum proyek pembangunan gedung tersebut adalah  juta rupiah. 
A. 220                      C. 230                  E. 280   
B. 225                      D. 260      

Pembahasan :

Misalkan f(x) menyatakan biaya proyek selama x hari dalam satuan ratus ribu rupiah, sehingga
f(x)=x(3x180+5.000x)=3x2180x+5.000
Agar biaya proyek minimum, nilai x yang bersesuaian dapat ditentukan saat f(x)=0, yakni
6x180=06x=180x=30
Proyek tersebut harus diselesaikan dalam waktu 30 hari agar biaya proyeknya minimum. Biaya yang dimaksud sebesar 
f(30)=3(30)2180(30)+5.000=2.7005.400+5.000=2.300
Jadi, biaya minimum proyek pembangunan gedung tersebut adalah 230 juta rupiah
(Jawaban C)

4. Biaya untuk memproduksi 
x bungkus keripik tempe adalah (14x2+25x+25) ribu rupiah. Jika setiap bungkus keripik dijual dengan harga (5512x) ribu rupiah, maka keuntungan maksimum yang dapat diperoleh adalah 
A. Rp225.000,00
B. Rp275.000,00
C. Rp375.000,00
D. Rp400.000,00
E. Rp425.000,00

Pembahasan :
Fungsi pengeluaran dari kasus di atas adalah f(x)=14x2+25x+25, sedangkan fungsi penjualan sebanyak x bungkus keripik tempe adalah g(x)=x(5512x)=55x12x2. Karena keuntungan didapat dari hasil penjualan dikurangi pengeluaran (modal), maka kita peroleh fungsi keuntunganh(x)=g(x)f(x)=(55x12x2)(14x2+25x+25)=34x2+30x25Nilai fungsi h akan maksimum ketika h(x)=0.
34(2)x+30=032x=30x=30×23x=20Substitusi x=20 pada h(x).
h(20)=34(20)2+30(20)25=300+60025=275Jadi, keuntungan maksimum yang diperoleh adalah Rp275.000,00.
(Jawaban B)

5. Sebuah peluru ditembakkan ke atas. Jika tinggi 
h meter setelah t detik dirumuskan dengan h(t)=120t5t2, maka tinggi maksimum yang dicapai peluru tersebut adalah  meter. 
A. 270                     C. 670                  E. 770
B. 320                      D. 720   

Pembahasan :
Diketahui: h(t)=120t5t2
Turunan pertama fungsi h adalah
h(t)=12010t
Nilai t akan maksimum saat h(t)=0, sehingga ditulis
12010t=010t=120t=12
Ketinggian maksimum yang dapat dicapai peluru adalah saat t=12, yaitu
h(12)=120(12)5(12)2=1440720=720 
Jadi, ketinggian maksimum peluru adalah 720 meter
(Jawaban D)



Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , maka transformasi T bersesuaian dengan matriks… Jawaban : E Pemba

BARISAN DAN DERET ARITMATIKA bersama contoh soalnya

BARISAN ARITMATIKA Barisan Aritmatika (Un) adalah barisan bilangan yang memiliki pola yang tetap. Nah, polanya itu bisa berdasarkan operasi penjumlahan atau pengurangan. Jadi, setiap urutan suku memiliki selisih atau beda yang sama. Selisih inilah yang dinamakan beda. Biasa disimbolkan dengan b. Misalnya, di suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a. Lalu, di suku kedua (U2), yaitu 5. Suku ketiga (U3), yaitu 8, dan seterusnya. Berarti, barisan ini memiliki beda 3 pada setiap sukunya. 2, 5, 8, ... (setiap suku memiliki selisih atau beda, yaitu 3) Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut. Contoh Soal Barisan Aritmatika 1 . Nilai   A. 882 B. 1030 C. 1040 D. 1957 E. 2060 Jawaban : B Pembahasan :  2 . Suku keempat dan suku ketujuh barisan aritmetika berturut-turut adalah 17 dan 29. Suku ke 25 barisan tersebut adalah…. A. 97 B. 101 C. 105    D.109    E. 113 Jawaban : B Pembahasan :  3 . Sua

PAS MATEMATIKA

 Deva Naufal Fadhilla (11) XI IPS 2 1. Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman 2.    3. 4.  5.  6.  7. Penjelasan dengan langkah-langkah: n_>5={1,2,3,4,5} 2n-3<2n-2 =2(1)-3<2(1)-2 =(-1)<0(benar) 2(2) -3<2(2) -2 =1<2 (benar) 2(3) -3<2(3) -2 =3<4(benar) 2(4) -3<2(4) -2 =5<6( benar) 2(5) -3<2(5) -2 =7<8( benar) 8. 9.  diket : 5kg gula + 30kg beras = 410.000 2kg gula + 60kg beras = 740.000 Dit : 2kg gula + 5kg beras ? Jwb : gula = x beras = y 5x + 30y = 410.000 |*2 2x + 60y = 740.000 |*1 10x + 60y = 820.000 2x + 60y = 740.000  _______- 8x = 80.000 x = 10.000 subtitusikan x nya ke persamaan  2x + 60y = 740.000 2(10.000) + 60y = 740.000 20.000 + 60y = 740.000 60y = 720.000 y = 12.000 jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000 maka 2kg gula dan 5kg beras = 2(10.000) + 5(12.000) = 20.000 + 60.000 = Rp 80.000 10. tentukan daerah bersih dari pertidaksamaan linear berikut 5x + 3y ≤ 15 jawaban : 5x + 3y ≤ 15