Skip to main content

LIMIT DAN KONSEP LIMIT FUNGSI ALJABAR

 

PENGERTIAN LIMIT

Pada dasarnya limit digunakan untuk menyatakan sesuatu yang yang nilainya mendekati nilai tertentu, seperti tak hingga yang pada dasarnya adalah angka yang sangat besar yang nilainya tidak dapat dipastikan. Limit menjelaskan suatu fungsi jika batas tertentu didekati. Jika suatu fungsi tidak terdefinisi untuk titik tertentu, tetapi kita masih bisa mencari nilai yang didekati oleh fungsi tersebut apabila titik tertentu makin didekati yaitu dengan limit.

Dalam dunia matematika, Limit biasa di tuiskan sebagai berikut


Keterangan :

  • Apabila x mendekati a tetapi x tidak sama dengan a maka f(x) mendekati L
  • Pendekatan x ke a bisa dilihat dari dua sisi yaitu pada sisi kiri dan sisi kanan ataupun dengan kata lain x bisa mendekati dari arah kiri dan arah kanan hingga menghasilkan limit kiri serta limit kanan

Toerema / Pernyataan:

Keterangan :    
  • Fungsi dikatakan mempunyai limit apabila antara limit kiri dan limit kananya mempunyai besar nilai yang sama 
  • Apabila limit kiri dan limit kanan tidak sama maka nilai limitnya tidak ada.

LIMIT FUNGSI ALJABAR

Apabila n merupakan bilangan bulat positif, k konstanta, f dan g adalah fungsi yang mempunyai limit di c, maka sifat-sifat di bawah ini berlaku.
Sifat-sifat limit fungsi aljabar

Ada 2 bentuk dalam menentukan limit fungsi aljabar yaitu:

Bentuk pertama

Bentuk kedua

Dalam hubungannya dengan bentuk limit yang pertama ada beberapa metode dalam menentukan nilai limit fungsi aljabar yaitu dengan cara substitusi dan cara pemfaktoran.

1. Cara Substitusi

Cara substitusi ini langkahnya dengan mengganti peubah yang mendekati nilai tertentu dengan fungsi aljabarnya. Berikut adalah beberapa contoh yang dapat dipahami.

Contoh 1:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 2:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 3:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 4:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 5:

Tentukan nilai limit fungsi aljabar dari,

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 6:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 7:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

2. Cara Pemfaktoran

Cara pemfaktoran digunakan apabila cara substitusi menghasilkan nilai limit yang tidak terdefinisikan seperti pada contoh berikut:

Cara pemfaktoran dilakukan dengan langkah menentukan faktor persekutuan antara pembilang dan penyebuntya. Berikut beberapa contoh untuk dipahami.

Contoh 1:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 2:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 3:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 4:

Tentukan nilai limit fungsi aljabar dari

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 5:

Tentukan nilai limit fungsi aljabar dari


Jadi, nilai dari limit fungsi aljabar tersebut,

Dalam hubungannya dengan bentuk limit yang kedua ada beberapa cara dalam menentukan nilai limit fungsi aljabar yaitu metode membagi dengan pangkat tertinggi penyebut dan metode mengalikan dengan faktor sekawan.

1. Metode membagi dengan pangkat tertinggi penyebut

contoh 1:

Tentukan nilai limit fungsi aljabar dari

Besar pangkat pembilang  dan penyebut dalam soal ini adalah 2, maka

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh 2:

Tentukan nilai limit fungsi aljabar dari

Besar pangkat pembilang dan penyebut dalam soal ini adalah 3, maka

Jadi, nilai dari limit fungsi aljabar tersebut,

Contoh soal 3:

Tentukan nilai limit fungsi aljabar dari

Besar pangkat pembilang dan penyebut dalam soal ini adalah 3, maka

Jadi, nilai dari limit fungsi aljabar tersebut,

2. Metode mengalikan dengan faktor sekawan

 Contoh soal:

Tentukan nilai limit dari
Untitled2.png

 

 

Langkah awal yang perlu dilakukan untuk menentukan nilai suatu limit yaitu dengan mensubtitusikan x=c ke f(x), sehingga dalam kasus ini substitusikan
x=4 ke 
Untitled9.png

Setelah disubstitusikan ternyata nilai limit tersebut tidak terdefinisi atau merupakan bentuk tak tentuUntitled6.png. Maka dari itu untuk menentukan nilai suatu limit harus menggunakan metode lain.  Apabila diperhatikan, pada f(x) terdapat bentuk akar yaituUntitled8.png sehingga metode perkalian dengan akar sekawaran dapat dilakukan pada kasus seperti ini.

 

Bentuk Untitled6.pngdapat difaktorkan menjadi Untitled7.png

Jadi, nilai limit fungsi aljabar tersebut adalah -4








Sumber    :

http://bunyan.co.id/materi-limit-fungsi-aljabar/

Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , m...

Pemandangan Gunung Pangrango

Deva Naufal Fadhilla (11) XI IPS 2 Keindahan Gunung Pangrango     Sumber :  TN Gunung Gede Pangrango Tiket & Aktivitas Maret 2021 - TravelsPromo Gunung Pangrango adalah gunung berapi yang tingginya mencapai 2.958 mdpl. Letaknya yang tak jauh dari Jakarta membuat banyak warga ibu kota mendaki Gunung Pangrango saat akhir pekan. Apalagi, gunung yang masuk di kawasan Taman Nasional Gunung Pangrango ini menyimpan banyak keindahan alam yang memukau. Sumber : Mount Gede Pangrango National Park (wikimapia.org) Banyak objek wisata menarik yang dapat kita nikmati saat melalui pendakian menuju puncak Gunung Gede. Salah satunya adalah Surya Kencana yang merupakan padang luas tempat tumbuhnya bunga edelweis. Selain itu, kita juga melewati sebuah tanjakan yang dikenal dengan nama Tanjakan Setan. Jalur tanjakan ini curam, agak ekstrim dan membutuhkan tenaga ekstra serta konsentrasi untuk melewatinya. Tapi jangan khawatir, karena sudah disediakan tali webbing untuk pegangan ...

Jawaban soal limit turunan dan integral no 11