Deva Naufal Fadhilla (11) XI IPS 2
Barisan Geometri
Baris geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan r. Perbandinganatau rasio antara nilai suku dengan nilai suku sebelumnya yang berdekatan selalu sama yaitu r. Sehingga:
Sebagai contoh baris 1, 2, 4, 8, 16, merupakan baris geometri dengan nilai
Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat diketahui dengan mengetahui nilai suku ke-k dan rasio antar suku yang berdekatan (r). Rumusannya berikut ini:
Jika yang diketahui adalah nilai suku pertama dan rasio antar sukunya (r), maka nilai k = 1 dan nilai
adalah:
Deret Geometri
Deret geometri adalah penjumlahan suku-suku dari suatu barisan geometri. Penjumlahan dari suku suku petama sampai suku ke-n barisan geometri dapat dihitung sebagai:
Atau sebagai:
Jika hanya diketahui nilai a adalah suku pertama dan nilai Un adalah suku ke-n, maka nilai deret aritmatikanya adalah:
dengan syarat 0 < r < 1.
Atau:
dengan syarat r> 1.
Persamaan tersebut bisa dibalik untuk mencari nilai suku ke-n. Cara memperolehnya sama dengan deret aritmatika yaitu:
CONTOH SOAL
Soal No.1
Diketahui sebuah barisan geometri 3, 6, 12....maka suku ketujuh dari barisan geometri tersebut :
a. 128
b. 192
c. 64
d. 190
Pembahasan
r = 2
Un = ar(n-1)
⇒ 3.2(7-1)
⇒ 3.2(7-1)
⇒ 192
Jawab : b
Soal No.2
Diketahui sebuah barisan geometri : 3, 9, 27, 81, 243. Berapakah rasio barisan geometri tersebut :
a. 4
b. 3
c. 2
d. 9
Pembahasan
Un = 243
U(n-1) = 81
Sehingga nilai rasio (r) :
r = Un U(n-1) = 243 81 = 3
Jawab :b
Soal No.3
Diketahui sebuah barisan geometri : 5, 10, 20, 40, 80, .... , 5120. Nilai suku tengahnya adalah :
a. 160
b. 320
c. 510
d. 640
Pembahasan
Un = 5120
Jawab :a
Soal No.4
Terdapat sebuah barisan geometri sebanyak lima suku. Jika suku pertamanya adalah 3 dan rasionya adalah 3. Berapakah suku tengahnya ?
a. 27
b. 81
c. 243
d. 9
Pembahasan
r = 3
n = 5
Jawab : a
Soal No.5
Diketahui barisan geometri dengan U5 = 6 dan U9 = 24. Maka suku ke-4 barisan tersebut adalah ...
A. 4√3
B. 3√3
C. 3√2
D. 2√3
Pembahasan
U5 = ar(5-1)
6 = ar4
U9 = ar(9-1)
24 = ar8
24 = ar4 . r4
24 = 6 . r4
24/6 = r4
r4 = 4
r = 4√4
r = 4¼
r = 2 2 . ¼
r = 2 ½
r = √2
Masukkan nilai r pada U5:
6 = ar4
6 = a(√24)
6 = a(4)
a =
U4 = ar4-1
U4 = ar3
U4 =
U4 =
U4 = 3√2
Jawab : C
Comments
Post a Comment