Skip to main content

Soal Penyelesaian matriks

Kesamaan Matriks

1.Jika diketahui matriks A dan B seperti di bawah ini, maka tentukanlah hubungan antara B + A dan A + B.

Pembahasan :

Sudah sangat jelas bahwa pada operasi penjumlahan matriks berlaku sifat komutatif sehingga B + A = A + B.


Soal determinan matriks berordo

2X2

Hitunglah berapa nilai determinan dari matriks ordo 2 x 2 berikut ini :

Jawaban untuk matriks ordo 2 x 2 di atas ialah seperti berikut ini :


3X3

Hitunglah berapa nilai determinan dari matriks ordo 3 x 3 berikut ini :

Jawaban untuk matriks ordo 3 x 3 di atas ialah seperti berikut ini :

det( A ) = ( 1 . 1 . 2 ) + ( 2 . 4 . 3 ) + ( 3 . 2 . 1 ) – ( 3 . 1 . 3 ) – ( 1 . 4 . 1 ) – ( 2 . 2 . 2 )
               =     ( 2 )       +     ( 24 )     +      ( 6 )      –      ( 9 )       –     ( 4 )      –       ( 8 )
               = 11

Jadi, nilai determinan dari matriks ordo 3 x 3 di atas ialah = 11


Kofaktor matriks ber-ordo 2 x 2 dan 3 x 3


Contoh soal : 

Tentukan matriks kofaktor 3 X 3 dari matriks 







Penyelesaian: 
Pada contoh perhitungan minor matriks sebelumnya, telah ditemukan bahwa minor matriks A adalah






Selanjutnya, akan ditentukan kofaktor matriks dari sebagai berikut:

















Jadi, matriks kofaktor dari A adalah 







Invers matriks berordo 2x2 dan 3x3
Ordo 2x2
Menentukan matriks invers dari!
contoh soal invers matriks
Jawaban :
Berikutnya, baris kedua dari kolom pertama dan baris pertama dari kolom kedua dikalikan dengan -1. Hasilnya adalah sebagai berikut.
jawaban soal invers matriks

Selanjutnya, cari determinan matriks
det = (2 × 6) – (4 × 1)
= 12 – 4
= 8

Setelah nilai adjoin dan determinan matriks diketahui. Kemudian masukkan rumus matriks di atas. Hasilnya adalah :
jawaban invers matriks
Ordo 3x3
Matriks A dikenal sebagai berikut : contoh soal matriks 3x3

Jawaban :

jawaban matriks 3x3



Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , maka transformasi T bersesuaian dengan matriks… Jawaban : E Pemba

BARISAN DAN DERET ARITMATIKA bersama contoh soalnya

BARISAN ARITMATIKA Barisan Aritmatika (Un) adalah barisan bilangan yang memiliki pola yang tetap. Nah, polanya itu bisa berdasarkan operasi penjumlahan atau pengurangan. Jadi, setiap urutan suku memiliki selisih atau beda yang sama. Selisih inilah yang dinamakan beda. Biasa disimbolkan dengan b. Misalnya, di suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a. Lalu, di suku kedua (U2), yaitu 5. Suku ketiga (U3), yaitu 8, dan seterusnya. Berarti, barisan ini memiliki beda 3 pada setiap sukunya. 2, 5, 8, ... (setiap suku memiliki selisih atau beda, yaitu 3) Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut. Contoh Soal Barisan Aritmatika 1 . Nilai   A. 882 B. 1030 C. 1040 D. 1957 E. 2060 Jawaban : B Pembahasan :  2 . Suku keempat dan suku ketujuh barisan aritmetika berturut-turut adalah 17 dan 29. Suku ke 25 barisan tersebut adalah…. A. 97 B. 101 C. 105    D.109    E. 113 Jawaban : B Pembahasan :  3 . Sua

PAS MATEMATIKA

 Deva Naufal Fadhilla (11) XI IPS 2 1. Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman 2.    3. 4.  5.  6.  7. Penjelasan dengan langkah-langkah: n_>5={1,2,3,4,5} 2n-3<2n-2 =2(1)-3<2(1)-2 =(-1)<0(benar) 2(2) -3<2(2) -2 =1<2 (benar) 2(3) -3<2(3) -2 =3<4(benar) 2(4) -3<2(4) -2 =5<6( benar) 2(5) -3<2(5) -2 =7<8( benar) 8. 9.  diket : 5kg gula + 30kg beras = 410.000 2kg gula + 60kg beras = 740.000 Dit : 2kg gula + 5kg beras ? Jwb : gula = x beras = y 5x + 30y = 410.000 |*2 2x + 60y = 740.000 |*1 10x + 60y = 820.000 2x + 60y = 740.000  _______- 8x = 80.000 x = 10.000 subtitusikan x nya ke persamaan  2x + 60y = 740.000 2(10.000) + 60y = 740.000 20.000 + 60y = 740.000 60y = 720.000 y = 12.000 jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000 maka 2kg gula dan 5kg beras = 2(10.000) + 5(12.000) = 20.000 + 60.000 = Rp 80.000 10. tentukan daerah bersih dari pertidaksamaan linear berikut 5x + 3y ≤ 15 jawaban : 5x + 3y ≤ 15