Skip to main content

SOAL CERITA UNTUK MENENTUKAN NILAI MAKSIMUM

 Matematika


Deva Naufal Fadhilla (10) XI IPS 2


Dewi akan membuat 2 model pakaian jadi. Model I memerlukan tidak lebih dari 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan tidak lebih dari 2 m kain polos dan 0,5 m kain bergaris. Bila pakaian tersebut dijual, setiap model I memperoleh untung tidak kurang dari Rp. 15.000,00 dan model II memperoleh untung tidak kurang dari  Rp. 10.000,00. Laba yang diperoleh Dewi adalah sebanyak ….

Diketahui      :

Model 1          = kain polos 1m dan kain bergaris 1,5m

Model 2          = kain polos 2m dan kain bergaris 0,5m

Persediaan    = kain polos 20 dan kain bergaris 10

Laba               = model 1 tidak kurang dari Rp.15.000,00 dan model 2 tidak kurang dari Rp.10.000

Ditanya          : laba yang diperoleh....

Jawaban       :

misalkan        : Model 1 : X

                        Model 2 : Y

Selanjutnya buat menjadi tabel agar mempermudah pembacaan.

 

Kain polos

Kain bergaris

Model 1 (x)

1x

1,5x

Model 2 (y)

2y

0,5y

Persediaan

20

10

 Buat kain polos menjadi persamaan, yaitu dengan ( model 1 + model 2 = persediaan) jadi persamaan untuk kain polos yaitu

1x + 2y = 20.......(kain polos)

Buat juga untuk kain bergaris menjadi persamaan, yaitu dengan (model 1 + model 2 = persediaan) jadi persamaan untuk kain bergaris yaitu

1,5x + 0,5y = 10.....(kain bergaris)

Untuk langkah selanjutnya, persamaan kain polos dan bergaris substitusi dan eliminasi kedua persamaan tersebut untuk mendapatkan nilai x dan y.


dari hasil eliminasi dan subtitusi tersebut dapat di simpulkan bahwa X = 4 dan Y = 8

maka cara menghitung labanya yaitu = laba = laba model 1 (x) + laba model 2 (y)

Laba = 15.000x + 10.000y

Karena nilai x dan y sudah ditemukan dengan cara substitusi dan elimanasi persamaan kainpolos dan kain bergaris. Selnajutnya tinggal memasukkan nilai x dan y kedalam Laba = 15.000x + 10.000y


 Jadi, Laba yang Dewi dapatkan ialah Rp.140.000,00


Terima Kasih


Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , m...

Jawaban soal limit turunan dan integral no 11

PENERAPAN TURUNAN: KEMONOTONAN, INTERVAL FUNGSI NAIK/TURUN, KECEKUNGAN DAN UJI TURUNAN KEDUA

  Kemonotonan fungsi adalah salah satu materi yang termasuk kedalam penggunaan turunan (pada buku kalkulus edisi 5 jilid 1). Materi ini digunakan untuk melihat naik turunya suatu grafik fungsi. Kemonotonan grafik fungsi akan mudah dipahami jika kamu sudah mengenal materi selang/interval. Soal kemonotonan fungsi biasanya menanyakan pada interval berapa fungsi tersebut naik dan pada interval berapa fungsi tersebut turun. Kemonotonan fungsi sederhananya seperti ini, suatu fungsi dikatakan monoton jika fungsi tersebut naik terus ataupun turun terus pada suatu selang/interval. Teorema berikutnya menunjukkan bagaimana penggunaan turunan kedua suatu fungsi untuk menentukan selang di mana grafik  f  tersebut cekung ke atas atau cekung ke bawah. Bukti teorema ini merupakan akibat langsung dari Teorema Uji Fungsi Naik dan Turun, dan definisi kecekungan. Adapun kurva fungsi naik dan fungsi turun dapat kita amati pada gambar di bawah ini. Fungsi f selalu naik pada interval I, jika m...