Skip to main content

Macam - macam dan Operasi Matrik

Deva Naufal Fadhilla (10) XI IPS 2


Macam - macam dan Operasi Matrik


Pengertian Matriks

Matriks merupakan susunan sekelompok bilangan didalam suatu jajaran yang berbentuk persegi panjang dan diatur berdasarkan baris dan kolom yang kemudian diletakkan antara 2 tanda kurung. Tanda kurung yang dipakai untuk mengapit susunan anggota matriks tersebut bisa berupa tanda kurung biasa atau kurung siku. Bilangan pada matriks disebut elemen atau unsur matriks.

Kumpulan elemen atau unsur yang tersusun secara horizontal disebut baris, sementara kumpulan elemen atau unsur yang tersusun secara vertikal disebut dengan kolom. Matriks yang memiliki m baris dan n kolom disebut dengan matriks m x n dan disebut sebagai matriks yang memiliki orde m x n. Selain itu, penulisan matriks menggunakan huruf kapital dan tebal.

Dalam matematika, matriks merupakan susunan bilangan, simbol, atau disebut dengan ekspresi, yang disusun dalam baris &  kolom sehingga membentuk bangun persegi. Sebagai contoh, dimensi matriks di bawah ini ialah 2 × 3, karena terdiri dari dua baris dan tiga kolom.

Jenis-jenis Matriks

Matriks terbagi menjadi beberapa jenis, yaitu matriks persegi, matriks kolom, matriks baris, matriks transpose, matriks diagonal, matriks segitiga atas dan bawah, matriks nol, matriks simetri, dan matriks identitas. Berikut ini penjelasannya :

  • Matriks Persegi

Matriks persegi merupakan matriks yang memilki banyak baris & banyak kolom yang sama. Secara umum, matriks persegi berordo n x n. Contoh dari matriks persegi seperti berikut :

  • Matriks Kolom

Matriks kolom merupakan matriks yang hanya satu kolom. Biasanya matriks kolom berordo m x 1. Contoh matriks kolom seperti berikut :

  • Matriks Baris

Matriks baris merupakan matriks yang hanya memiliki satu baris. Biasanya matriks baris berordo 1 x n. Contoh matriks baris seperti berikut :
  • Matriks Transpose

Matriks transpose Am x n yang dinotasikan dengan A’ merupakan matriks berordo n x m yang mana baris-barisnya ialah kolom-kolom matriks Am x n. Contoh matriks transpose, misalkan terdapat matriks A:
  • Matriks Diagonal

Matriks diagonal ini berasal dari matriks persegi. Matriks persegi disebut sebagai matriks diagonal apabila elemen-elemen (unsur) selain elemen diagonal utamanya ialah nol. Contoh matriks diagonal:

  • Matriks segitiga atas & Matriks segitiga bawah

Matriks segitiga atas & matriks segitiga bawah bisa berasal dari matriks persegi. Matriks persegi disebut matriks segitiga atas apabila seluruh elemen di bawah diagonal utamanya bernilai nol. Sebaliknya, apabila seluruh elemen di atas diagonal utamanya bernilai nol, maka matriks persegi itu disebut dengan matriks segitiga bawah. Contoh Matriks Segitiga atas & Matriks Segitiga Bawah seperti berikut :

Matriks A merupakan matriks segitiga atas, sedangkan matriks B merupakan matriks segitiga bawah.

  • Matriks Simetri

Misalkan ada matriks A. Maka matriks A akan disebut matriks simetri apabila A’ = A atau setiap elemen-elemen pada matriks A yang letaknya simetris terhadap diagonal utama bernilai sama, yakni aij = aji dengan i tidak sama dengan j. Contoh matriks simetri, seperti berikut :

  • Matriks Nol

Suatu matriks akan disebut matriks nol apabila semua elemen dari matriks tersebut yakni ialah nol. Contoh matriks nol seperti berikut :

  • Matriks Identitas

Matriks identitas merupakan matriks diagonal yang mana seluruh elemen pada diagonal utamanya adalah 1. Matriks identitas pada umunya dinotasikan dengan I. Contoh matriks indentitas seperti berikut :



Operasi Matriks


1. Penjumlahan Matriks

Syarat pada penjumlahan matriks ialah harus memiliki ordo yang sama, dan menambahkan pada posisi atau letak yang sama. Contohnya sebagai berikut :
Penjumlahan Matriks
2. Pengurangan Matriks

Syarat pada pengurangan matriks juga sama dengan penjumlahan. Misal matriks C adalah pengurangan matriks A dan B, perlu kita ketahui bahwa matriks pengurangan ialah sama dengan penambahan Matriks A dengan perkalian skalar -1 dengan matriks B.

"C=A-B" sama dengan "C = A+ [-1] B"

Contoh pengurangan matriks sebagai berikut :
Pengurangan Matriks
3. Perkalian matriks dengan skalar

Pada perkalian matriks dengan skalar caranya yaitu mengalikan nilai skalar dengan semua letak matriks. Contohnya sebagai berikut :
Perkalian matriks dengan skalar
4. Perkalian matriks dengan matriks

Syarat pada perkalian matriks ialah jumlah kolom pada matriks pertama sama dengan jumlah baris pada matriks kedua. Contohnya sebagai berikut perkalian A2x3 dan 3x3 :

Perkalian matriks dengan matriks 2


Contoh Soal 1

Jika diketahui persamaan metrik !

A. 4
B. 5
C. 7
D. 29
E. 31

Pembahasannya :

Karena kedua matriks sama, maka elemen-elemen yang seletak akan sama pula, sehingga berlaku:

2x + 1 = 3
2x = 2
x = 1
y + 12 = 15
y = 3
x + y = 1 + 3 = 4

Jawabannya : A

Contoh Soal 2

Contoh Soal 3

Contoh Soal 4

Contoh Soal 5

Contoh Soal 6

Contoh Soal 7

Jika determinan nilai matriks A adalah 4 kali determinan nilai matriks B, maka nilai x adalah…

 A. 4/3 
B. 8/3 
C. 10/4 
D. 5/3 
E. 16/7

Pembahasannya:
det A = 4 det B 
x (16 x ) – (-16) = 4 (108 – (-152)) 
x (4 2x ) + 16 = 4 (260) 
3x = 4 (260) – 16 
3x = 4 (260) – 4 (4) 
3x = 4 (260 – 4) 
3x = 4 (256) 
3x = 4. 4 4
3x = 4 5
3x = 5 
x = 5/3

Jawabannya : D

Contoh Soal 8

Contoh Soal 9

Contoh Soal 10

A.60 derajat
B.40 derajat
C.30 derajat
D.10 derajat
E.70 derajat

Pembahasannya :

Jumlah dan selisih kedua vektor masing-masing adalah:

Jawabannya : A




Comments

Post a Comment

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , maka transformasi T bersesuaian dengan matriks… Jawaban : E Pemba

BARISAN DAN DERET ARITMATIKA bersama contoh soalnya

BARISAN ARITMATIKA Barisan Aritmatika (Un) adalah barisan bilangan yang memiliki pola yang tetap. Nah, polanya itu bisa berdasarkan operasi penjumlahan atau pengurangan. Jadi, setiap urutan suku memiliki selisih atau beda yang sama. Selisih inilah yang dinamakan beda. Biasa disimbolkan dengan b. Misalnya, di suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a. Lalu, di suku kedua (U2), yaitu 5. Suku ketiga (U3), yaitu 8, dan seterusnya. Berarti, barisan ini memiliki beda 3 pada setiap sukunya. 2, 5, 8, ... (setiap suku memiliki selisih atau beda, yaitu 3) Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut. Contoh Soal Barisan Aritmatika 1 . Nilai   A. 882 B. 1030 C. 1040 D. 1957 E. 2060 Jawaban : B Pembahasan :  2 . Suku keempat dan suku ketujuh barisan aritmetika berturut-turut adalah 17 dan 29. Suku ke 25 barisan tersebut adalah…. A. 97 B. 101 C. 105    D.109    E. 113 Jawaban : B Pembahasan :  3 . Sua

PAS MATEMATIKA

 Deva Naufal Fadhilla (11) XI IPS 2 1. Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman 2.    3. 4.  5.  6.  7. Penjelasan dengan langkah-langkah: n_>5={1,2,3,4,5} 2n-3<2n-2 =2(1)-3<2(1)-2 =(-1)<0(benar) 2(2) -3<2(2) -2 =1<2 (benar) 2(3) -3<2(3) -2 =3<4(benar) 2(4) -3<2(4) -2 =5<6( benar) 2(5) -3<2(5) -2 =7<8( benar) 8. 9.  diket : 5kg gula + 30kg beras = 410.000 2kg gula + 60kg beras = 740.000 Dit : 2kg gula + 5kg beras ? Jwb : gula = x beras = y 5x + 30y = 410.000 |*2 2x + 60y = 740.000 |*1 10x + 60y = 820.000 2x + 60y = 740.000  _______- 8x = 80.000 x = 10.000 subtitusikan x nya ke persamaan  2x + 60y = 740.000 2(10.000) + 60y = 740.000 20.000 + 60y = 740.000 60y = 720.000 y = 12.000 jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000 maka 2kg gula dan 5kg beras = 2(10.000) + 5(12.000) = 20.000 + 60.000 = Rp 80.000 10. tentukan daerah bersih dari pertidaksamaan linear berikut 5x + 3y ≤ 15 jawaban : 5x + 3y ≤ 15