Skip to main content

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA

 

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA


Luas suatu bidang dengan bentuk  tertentu (seperti: lingkaran, segitiga, segiempat, dll) dapat ditentukan dengan rumus-rumus dasar yang sudah diketahui. Namun, untuk menentukan luas suatu bidang yang tidak beraturan atau tidak tentu akan sulit. Lihatlah gambar di bawah yang merupakan luasan area dibawah grafik y = f(x) yang dibatasi oleh x = a, x = b, dan garis x. Luas area tersebut hampir mendekati dengan luas dari total 11 segi panjang.

Jika jumlah segi panjang diperbanyak 21 buah seperti gambar dibawah, maka jumlah total luas persegi panjang tersebut semakin mendekati luas area grafik yang ditentukan. Sehingga untuk mendapatkan luas area tersebut, jumlah persegi panjang dibuat mendekati tak hingga. Dapat disimpulkan luas dari area sama dengan limit luas total segi panjang menuju tak hingga.

luas bidang di bawah grafik fx

 

Konsep ini menjadi dasar untuk mencari luas suatu bidang tak tentu. Luas suatu bidang di bawah grafik y = f(x) yang dibatasi oleh x = a, x = b dapat dicari dengan mengintegralkan fungsi tersebut pada selang a \le x \le b. Atau dapat ditulis:

Luas =\int^b_af(x)dx


Pengoperasian integral tentu sama dengan intergral tak tentu hanya saja nilai a dan b disubstitusikan dalam fungsi hasil integral sebagai berikut:

\int^b_af(x) dx = [F(x)]^b_a=F(b)-F(a)

Lihat contoh berikut ini sebagai pemahaman:

  • \int^3_1 4x^3dx=[x^4]^3_1=(3^4)-(1^4) = 80
  • \int^2_1\frac{1}{x^3}dx =[-\frac{1}{2x^2}]^2_1 = [-\frac{1}{2(2)^2}]^2_1-(-\frac{1}{2(1)^2}) = -\frac{1}{8}+\frac{1}{2}=\frac{3}{8}

Intergral tentu memiliki sejumlah sifat-sifat penting yang dapat digunakan dalam pengoperasian matematika yaitu:

  • \int^a_a f(x)dx=0
  • \int^b_a f(x) dx = - \int^a_b f(x) dx
  • \int^b_a k \cdot f(x)dx=k \cdot \int^b_af(x)dx     …     dengan k adalah konstanta/ bilangan
  • \int^b_af(x)+g(x)dx = \int ^b_a f(x)dx +\int^b_a g(x)dx
  • \int^b_af(x)-g(x)dx = \int^b_af(x)dx - \int^b_ag(x)dx
  • \int^c_af(x)dx = \int^b_af(x)dx+\int^c_bf(x)dx     …     dengan a < b < c

Pengintegralan suatu fungsi tidak selamanya dapat dikerjakan secara langsung dengan rumus dasar:

\int ax^ndx=\frac{a}{(n+1)}x^{(n+1)}+C

Bisa atau tidak ditentukan oleh bentuk fungsi yang diintegralkan. Teknik pengintegralan terdiri dari dua jenis yaitu teknik substitusi dan teknik parsial.

Penggunaan Integral

Pada penjelasan sebelumnya integral dapat digunakan untuk mencari luas suatu bidang sebagai fungsi pada interval a \le x \le b  dan dibatasi sumbu x sebagaimana proses integral tentu. Lihat tabel berikut:

Jenis KegunaanBatasanLuas (A)Keterangan
Luas grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
A =\int^b_a f(x) dxLuas bidang berada pada:

  • Atas sumbu x, atau
  • Bawah sumbu x
Luas antara dua grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
A =\int^b_a f(x) - g(x) dxf(x) > g(x) pada selang a ≤ x ≤ b
Luas antara dua grafik dengan ordo maksimal 2
  •  Grafik f(x)
  •  Grafik g(x)
A = \frac{D \sqrt{D}}{6a^2}Determinan (D) didapat dari f(x) = g(x) menjadi ax2 + bx + c = 0

Pada penggunaan lebih lanjut, integral dapat digunakan untuk mencari volume. Volume didapat dari suatu bidang yang mengelilingi/berputar pada suatu sumbu. Metode untuk menghitung volume benda putar adalah metode cakram dan metode kulit.

Metode Cakram

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu xV = \int^b_a \pi [f(x)]^2) dx
  •  Grafik f(y)
  •  a ≤ y ≤ b
  •  Sumbu y
Sumbu yV = \int^b_a \pi [f(y)]^2) dy
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu xV = \int^b_a [f(x)]^2 - [g(x)]^2) dx
  •  Grafik f(y)
  •  Grafik g(y)
  •  a ≤ y ≤ b
Sumbu yV = \int^b_a [f(y)]^2 - [g(y)]^2) dy

Metode Kulit

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu yV = 2 \pi \int^b_a x \cdot f(x) dx
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu yV = 2 \pi \int^b_a x \cdot [f(x) - g(x)] dx



Contoh Soal Integral Tentu, Penggunaan Integral, dan Pembahasan

Tentukan luas daerah yang dibatasi oleh 2 grafik yaitu grafik y = 2x^3 + x^2 - x - 1 dan grafik y = x^3 + 2x^2 - x - 1.

Pembahasan:

Kedua grafik dibuat persamaan f(x) – g(x) untuk mendapat titik potong:

2x^3 + x^2 - x - 1 = x^3 + 2x^2 + 5x  - 1

x^3 - x^2 - 6x = 0

(x+2)(x)(x-3) = 0

Akar-akarnya merupakan titik potong kedua grafik yaitu x = -2, x = 0, x = 3.

Maka luas grafik tersebut adalah:

A =\int^b_a f(x) - g(x) dx = \int^c_a f(x) - g(x) dx + \int^b_c f(x) - g(x) dx

Dengan a = -2, b = 3, dan c = 0, maka

A =\int^0_{-2} f(x) - g(x) dx = \int^0_{-2} x^3 - x^2 - 6x dx = [\frac{1}{4}x^4 - \frac{1}{3}x^3 - \frac{6}{2}x^2]^0_{-2}

= 0 - (\frac{1}{4}(-2)^4 - \frac{1}{3}(-2)^3 - \frac{6}{2}(-2)^2)

= 0 - (\frac{16}{4} - \frac{8}{3} - 12) = - (\frac{48 + 32 - 144}{12}) = \frac{64}{12}

A =\int^3_0 f(x) - g(x) dx = \int^3_0 x^3 - x^2 - 6x dx = [\frac{1}{4}x^4 - \frac{1}{3}x^3 - \frac{6}{2}x^2]^3_0

= (\frac{1}{4}(3)^4 - \frac{1}{3}(3)^3 - \frac{6}{2}(3)^2) - 0 = \frac{81}{4} - 9 - 27 = - \frac{63}{4}

Nilai - \frac{63}{4} memiliki tanda (-) mengartikan pada interval 0 ≤ x ≤ 3 kurva g(x) > f(x), sehingga penulisan integran terbalik. Seharusnya: g(x) – f(x). Luas tidak mungkin (-) sehingga yang dijumlahkan adalah \frac{63}{4}. Sebagai berikut:

A = \int^c_a f(x) - g(x) dx + \int^b_c f(x) - g(x) dx = \frac{64}{12} + \frac{63}{4} = \frac{64 + 189}{12} = \frac{253}{12} = 21 \frac{1}{12}

Comments

Popular posts from this blog

SOAL TRANSFORMASI DAN PENYELESAIANNYA

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . . Jawaban : C Pembahasan :  Jawabannya adalah C 2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….  A. y = x² – 2x – 3  B. y = x² – 2x + 3 C. y = x² + 2x + 3 D. x = y² – 2y – 3 E. x = y² + 2y + 3 Jawaban : D Pembahasan :  Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri. pencerminan terhadap garis y = -x Jawabannya adalah D 3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks   adalah….  A. x² + y² – 6x – 4y- 3 = 0 B. X² + y² – 6x + 4y- 3 = 0 C. x² + y² + 6x – 4y- 3 = 0 D. x² + y² – 4x + 6y- 3 = 0 E. x² + y² + 4x – 6y+ 3 = 0 Jawaban : A Pembahasan :  Jawabannya adalah A 4. T 1  dan T 2  adalah transformasi yang masing-masing bersesuaian dengan  Ditentukan T = T 1  o T 2  , m...

Pemandangan Gunung Pangrango

Deva Naufal Fadhilla (11) XI IPS 2 Keindahan Gunung Pangrango     Sumber :  TN Gunung Gede Pangrango Tiket & Aktivitas Maret 2021 - TravelsPromo Gunung Pangrango adalah gunung berapi yang tingginya mencapai 2.958 mdpl. Letaknya yang tak jauh dari Jakarta membuat banyak warga ibu kota mendaki Gunung Pangrango saat akhir pekan. Apalagi, gunung yang masuk di kawasan Taman Nasional Gunung Pangrango ini menyimpan banyak keindahan alam yang memukau. Sumber : Mount Gede Pangrango National Park (wikimapia.org) Banyak objek wisata menarik yang dapat kita nikmati saat melalui pendakian menuju puncak Gunung Gede. Salah satunya adalah Surya Kencana yang merupakan padang luas tempat tumbuhnya bunga edelweis. Selain itu, kita juga melewati sebuah tanjakan yang dikenal dengan nama Tanjakan Setan. Jalur tanjakan ini curam, agak ekstrim dan membutuhkan tenaga ekstra serta konsentrasi untuk melewatinya. Tapi jangan khawatir, karena sudah disediakan tali webbing untuk pegangan ...

Jawaban soal limit turunan dan integral no 11